[Plugwise |

Stretch miniREST v2 API

Introduction

The Plugwise Stretch miniRest APl is a simplified and somewhat limited API for controlling the
Plugwise Stretch and the connected Plugwise modules. Goal is to reduce the required coding on the
client side and still offer all of the functionalities for daily operation of the Stretch in a easy to use way.
This document is intended for developers who have a good understanding of the Plugwise products,
XML and HTTP requests (i.e. AJAX).

License

The Plugwise Stretch miniRest APl is free to use without notice for non commercial use. Commercial
use (i.e. commercial applications and/or systems) of this APl or any Plugwise API is not allowed
without written permission by Plugwise B.V. in the Netherlands.

We do encourage system integration so please contact us if you have commercial interest.

Support

The Plugwise Stretch miniRest APl is not supported by the Plugwise Helpdesk. However, if you have a
question or find a bug, feel free to send an email to the helpdesk@plugwise.com.

Disclaimer

The Plugwise Stretch miniRest APl is considered to be a beta release. Although Plugwise will do its
best to maintain backwards compatibility, specifications might change without prior notice.

Plugwise B.V.
Wattstraat 56

2171 TR Sassenheim
The Netherlands
T:+31(0) 25243 30 74
F: +31(0) 252 43 30 79
E: info@plugwise.com

Stretch miniREST API v2 draft 2014-01-15/TVR

mailto:helpdesk@plugwise.com
mailto:info@plugwise.com

Plugwise 2

Contents

Introduction

License

Support

Disclaimer

Contents

Datamodel

Supported HTTP methods

Testing

Objects
Network

Module
Appliance

Group
Location

Rule
Enumerations
Creating and updating objects
Deleting objects
Linking objects
Unlinking objects
Cascading relations and filters
Date and time values
Using ‘now’” and ‘today’
Modules: Linking an appliance
Switching: Appliances and groups
Switching: Modules
Network: Scanning, adding and removing nodes
Examples
Example 1: Creating. linking. naming and switching an appliance
Example 2: Adding and removing modules to and from a network

Stretch miniREST API v2 draft 2014-01-15/TVR

[Plugwise :

Datamodel
The data model is based on the Source’ data model, rather than the Stretch’s internal data model.
11 location
o— N:1
o= NN I
network module appliance
L node - .
schedule trigger group
rule rule
e On the Stretch, ‘location’ is the equivalent of the ‘room’ object of Source
e On the Stretch, ‘rule’ replaces both the ‘trigger’ and ‘schedule’ object of Source
e In Source a group can have 0 or more triggers, on the Stretch, a Group can have 0 or 1
e On the Stretch for each trigger rule without a group, a switching group is created
e In Source a schedule is linked to an appliance, on the Stretch a schedule rule is linked to a

module
e A Plugwise network consists of nodes rather than modules. A node is always a module, but a
module does not need to be a node, i.e. a smart meter module.

Supported HTTP methods

GET retrieving objects
POST creating and updating objects and relations
DELETE deleting objects and relations

Each request must send the HTTP header
Content-Type: text/xml

POST and DELETE can be mimicked in a GET by using _method_=POST resp. _method_=DELETE in the
URL. The data to POST must be URL-encoded and passed with parameter _body_.

Testing

A page to view and test API calls can be found on the Stretch at the url /miniresttest.html

Stretch miniREST API v2 draft 2014-01-15/TVR

(& Plugwise :

Objects

Objects are represented by XML nodes. You can GET objects by class or GET all objects by one

request using
GET: /minirest/allobjects
RESULT:
<restobjects>

</restobjects>
Objects in the output are sorted by name.

Note: In the examples in this document, most objects ids are shorted to the form “xxxx...xx’, in real life
you should always use the full 32 characters of an id.

Network

GET: /minirest/networks
RESULT:
<network id="4485...27">
<type>pwzigbee</type>
<name>00OD6FOOOO4EEA32</name>
<created_date>2012-08-30T21:15:11+02:00</created_date>
<last_seen_date>2012-08-31T19:12:51+02:00</last_seen_date>
<modified_date>2012-08-31T19:12:51+02:00</modified_date>
<scan_for_nodes>off</scan_for_nodes>
<nodes>
<node id="0971...24">
<mac_address>000D6FOPORAEEA32</mac_address>
<type>0</type>
</node>
<node id="c261...83">
<mac_address>000D6F0000138B49</mac_address>
<type>1</type>
</node>
<node id="4ce8...08">
<mac_address>000D6F00001C7C53</mac_address>
<type>2</type>
</node>
</nodes>
<nodes_available>
<node>
<mac_address>000D6F000O76DOE4< /mac_address>
<last_seen_date>2012-09-02T718:18:15+02:00</last_seen_date>
</node>
</nodes_available>
<nodes_to_add>
<node><mac_address>000D6F0001A403C5</mac_address></node>
<node><mac_address>000D6F0001A4035D</mac_address></node>
</nodes_to_add>

Stretch miniREST API v2 draft 2014-01-15/TVR

(& Plugwise 5

<nodes_to_delete>
<node><mac_address>000D6F000OC3CD81</mac_address></node>
</nodes_to_delete>
</network>

A network node is always a module, the module id is the same as the node id, but a module does not
need to be a node, for example a smart meter module.

Module

Type | ZigBee | Product name

0 MC Stick, Built-in in Stretch
1 NC Circle+, Stealth+, Sting+
2 NR Circle, Stealth, Sting

3 SSwW Switch

5 SSN Sense

6 SSC Scan

GET: /minirest/modules
RESULT:
<module id="762a...32">
<mac_address>000D6FO00OOBB4FEB</mac_address>
<name>@OB84FEB</name>
<type>3</type>
<hardware_version>6539-0800-2904</hardware_version>
<firmware_version>2012-06-27</firmware_version>
<created_date>2012-08-30T21:15:55+02:00</created_date>
<modified_date>2012-08-31T19:56:37+00:00</modified_date>
<last_seen_date>2012-08-31T19:56:37+00:00</last_seen_date>
<network id="4485...27"/>
</module>

A NC and NR have the additional elements
<power_state>on</power_state>
<current_power_usage>@</current_power_usage>
<last_known_measurement_date>2012-08-30T21:16:39+00:00</1last_known_measurement_date>

A SSN has the additional elements
<current_temperature>26.00</current_temperature>
<current_humidity>35.60</current_humidity>
<last_known_measurement_date>2012-08-31T19:56:44+00:00</last _known_measurement_date>

For filters, a module can not just be identified by its id, but also by its mac address or a (significant) end
part of the mac address.
For example. A module with id ‘de381cade5144de@a50698d35b1b27b8¢ and mac address

Stretch miniREST API v2 draft 2014-01-15/TVR

(& Plugwise 6

‘@POD6FOPRRC3CD81’ can be filtered by
GET: /minirest/modules;id=d0381cad05144de0a50698d35b1b27b8
GET: /minirest/modules;id=000D6F0000C3CD81
GET: /minirest/modules;id=0C3CD81
etc.

To get the appliance this module is linked to
GET: /minirest/appliances;module=d0381cad05144de®a50698d35b1b27b8
GET: /minirest/appliances;module=0C3CD81
etc.

It is advised not to use shortened mac addresses of less than 6 character, to prevent matching the
wrong module.

Appliance

GET: /minirest/appliances
RESULT:
<appliance id="c2f3...a0">
<name>The Appliance</name>
<type>radio</type>
<created_date>2012-08-31T08:20:23+00:00</created_date>
<modified_date>2012-08-31T20:14:53+00:00</modified date>
<last_seen_date>2012-08-31T20:14:53+00:00</last_seen_date>
<power_state>off</power_state>
<current_power_usage>@</current_power_usage>
<do_not_switch_off>false</do_not_switch_off>
<last_known_measurement_date>2012-08-31T18:01:38+00:00</last_known_measurement_date>
<module id="fcfa...d3"/>
<location id="0996...76"/>
<groups>
<group id="f239...f8"/>
</groups>
</appliance>

The elements ‘groups’ and ‘location’ only exist if one or more relations exists.

Group

GET: /minirest/groups
RESULT:
<group id="f239...f8">
<name>A Group</name>
<type>switching</type>
<created_date>2012-08-31T08:20:44+00:00</created_date>
<modified_date>2012-08-31T720:14:53+00:00</modified_date>
<appliances>
<appliance id="bcf6...bb"/>
<appliance id="c2f3...a0"/>
</appliances>
</group>

Stretch miniREST API v2 draft 2014-01-15/TVR

[Plugwise

The element ‘appliances’ only exists if one or more relations exists.

Location

GET: /minirest/locations
RESULT:
<location id="0996...76">
<name>A Location</name>
<type>livingroom</type>
<created date>2012-08-31T20:13:16+00:00</created _date>
<modified date>2012-08-31T20:14:53+00:00</modified date>
<appliances>
<appliance id="c2f3...a0"/>
</appliances>
<modules>
<module id="abdf...ae"/>
</modules>
</location>

The element ‘appliances’ only exists if one or more relations exists.

Rule

A rule object is automatically created for each trigger on a module (like buttons on a Switch)

Type Product name
button_left Switch, left button
button_right Switch, right button

thermo_trigger Sense, temperature

hygro_trigger Sense, humidity

motion_trigger Scan, movement

schedule Circle (+), schedule

GET: /minirest/rules
RESULT:
<rule id="17e3...b6">
<name>@0B84FEB_button_left</name>
<type>button_left</type>
<created_date>2012-08-30T21:15:55+00:00</created_date>
<modified_date>2012-08-31T19:56:37+00:00</modified_date>
<last_seen_date>2012-08-31T19:56:37+00:00</last_seen_date>
<modules>
<module id="762a...32"/>

</modules>
<group id="6aae...43"/>

Stretch miniREST API v2 draft

2014-01-15/TVR

(& Plugwise 8

</rule>

A thermo of hygro trigger has the additional element
<settings>
<upwards boundary="0" action="off"/>
<downwards boundary="0" action="off"/>
</settings>

A motion trigger has the addition element
<settings sensitivity="medium" daylight_override="off" delay="15"/>

A rule is changed by posting the changes:
POST: /minirest/rules
RESULT:
<rule id="17e3...b6">
<settings sensitivity="high" daylight_override="off" delay="5"/>
</rule>

A switching group is created and linked for and to each trigger rule. This group can be updated or
replaced and even deleted by the user, but as soon as a rule is no longer linked to a group, a new
group is created and linked automatically.

Schedule rules are not automatically created. You can create as many schedules as you need, but a
module (like a Circle) can have only 1 schedule rule.

The format for a schedule rule is
<rule id="ec68...09">

<name>First schedule</name>

<type>schedule</type>

<created_date>2013-12-19T19:59:34+01:00</created_date>

<modified_date>2013-12-23T13:15:24+01:00</modified_date>

<modules>
<module id="32ec...8e"/>
<module id="df77...54"/>

</modules>

<settings>
<edge day="mo" time="06:45" value="on"/>
<edge day="mo" time="22:00" value="off"/>
<edge day="tu" time="06:45" value="on"/>
<edge day="tu" time="22:00" value="10"/>
<edge day="we" time="06:45" value="on"/>
<edge day="we" time="22:00" value="10"/>
<edge day="th" time="06:45" value="off"/>
<edge day="th" time="22:00" value="19"/>
<edge day="fr" time="06:45" value="on"/>
<edge day="fr" time="22:00" value="10"/>
<edge day="sa" time="06:45" value="on"/>
<edge day="sa" time="22:00" value="100"/>
<edge day="su" time="06:45" value="on"/>
<edge day="su" time="22:00" value="1990"/>

</settings>

</rule>

Stretch miniREST API v2 draft 2014-01-15/TVR

[Plugwise 9

Unlike Source, a schedule on the Stretch consist of setpoints. Day codes are ‘mo’, ‘tu’, ‘we’, ‘th’, ‘fr’,
‘sa’, ‘su’. The ‘time’ value must be rounded to the quarters of an hour. Allowed values for ‘value’ are ‘on’,
‘off and standby values in Watts.

Enumerations

A list of supported appliance, groups, and location types can be retrieved with
GET: /minirest/enumerations
RESULT:
<enumerations>
<group>
<application/>
<report/>

</group>
<location»>
<bathroom/>

</enumerations>

Creating and updating objects

The miniREST API automatically creates and links an appliance object for every power metering
module (NC and NRs) and a switching group for every rule. It does not automatically delete these
created objects, when the module or rule is deleted.

Obijects of classes appliance, group, location and Schedule rule can be created by the user. Objects of
classes network, module and rule (except Schedule rule) are created automatically by the Stretch.

On creation only the name and type should be specified, other properties must be set by updating the
object.

To create an object, an XML is sent as the body of an HTTP-POST, with one or more elements of the
object type. The result is a list with the created objects.

Example:
POST: /minirest/appliances
BODY:
<appliances>
<appliance>
<name>The Appliance</name>
<type>radio</type>
</appliance>
</appliances>

Updating is done in the same manner, except that in the body the object’s element has an ‘id’ attribute
with the uuid of the object.

Stretch miniREST APl v2 draft 2014-01-15/TVR

[Plugwise 1

Example:
POST: /minirest/appliances
BODY:
<appliance id="12c1...59">
<type>dryer</type>
<do_not_switch_off>true</do_not_switch_off>
</appliance>

Deleting objects

Only objects created by a user can be deleted by a user; networks, modules and trigger rules cannot
be deleted.

To delete an object, the id of the object is sent in the URL of a HTTP-DELETE

Example:
DELETE:/minirest/appliances;id=12c1...59

Linking objects

As shown in the data model, objects can have relations. Infact most objects have relations with one or
more other objects. For example a module can be linked to an appliance.

To link (relate) an object to one or more other objects, the id of the object is specified in the URL,
together with the plural of the type of the objects than will be linked, followed by the IDs of the objects to

link.
POST: /minirest/appliances;id=c11f...96/modules;id=758d...96
BODY:

In a URL a relation is always plural even if the relation can only be singular.
If a new relations conflict with an existing relation (i.e. the appliance is already linked to a
module), the existing relation is removed.

Unlinking objects

To remove the link (relation) between 2 objects, a HTTP-DELETE is used.

Example
DELETE /minirest/appliances;id=c11f...96/modules;id=758d...96

Cascading relations and filters

When querying objects using HTTP-GET, relations can be cascaded in the URL and filters can be
used to retrieve specific sets of objects. The syntax is:

Stretch miniREST API v2 draft 2014-01-15/TVR

[Plugwise "

<type+s>[[;<attribute><operator><value>[,...]][...][/relation+s]][...]

Supported operators are:
= !=: >, >=, £, L=

Examples:

The groups of a specific appliance
/minirest/appliances;id=bcf6...bb/groups

All the modules that are linked to any appliance:
/minirest/appliances/modules

Locations that have a appliance linked to any module:
/minirest/modules/appliances/locations

Locations that have a radio:
/minirest/appliances;type=radio/locations

Bedrooms that have television or a radio
/minirest/appliances;type=radio,tv/locations;type=bedroom

Radios and televisions placed in bedrooms
/minirest/locations;type=bedroom/appliances;type=radio,tv

Radios and televisions placed in bedrooms that currently use more than 50 Watts
/minirest/locations;type=bedroom/appliances;type=radio,tv;current_power_usage>50

Date and time values

Date values are returned in ISO 8601 format and should also be sent in that format. The format is
YYYY-MM-DD[<T|<space>>hh:mm[:ss][<+]|->th:tm]]

Examples of valid dates:
2012-09-01T13:19:14+02:00
2012-09-01 13:19:14+02:00
2012-09-01 13:19+02:00
2012-09-01T13:19
2012-09-01

If the time part of a date is omitted in a filter, then only the date part of a property is used in that filter.

Using ‘now’ and ‘today’

A date can be compared to the current date and time by using ‘now’ as value. Using ‘now(<offset>)’
will use the current date and time added with the specified offset in seconds, which can be negative.

For example to get the modules that were seen in the last minute:
/minirest/modules;last_seen_date>now(-60)

Stretch miniREST APl v2 draft 2014-01-15/TVR

[Plugwise 1

Another special value for date filters is “today’, which takes the date part of the current date and time.
Using ‘today(<days>[,<minutes>])’ will add ‘days’ and optionally ‘minutes’ to 00:00 am today. If
‘minutes’ is omitted, only the resulting date part is used. With ‘minutes’, even if it is ‘0’, the whole date
and time is used. Thus ‘today’ and ‘today(0)’ both result in ‘2612-89-01’ while ‘today(e,0)’ results in
'2012-09-01T00:00:00+02:00'.

All modules that have been seen today:
/minirest/modules;last_seen_date=today

All Senses that have been seen after 10:00 am today
/minirest/modules;type=5;last_seen_date>today(0,600)

Modules: Linking an appliance

There are 2 methods for linking a module to an appliance. The obvious method is to POST the module

id to the appliance:
POST: /minirest/appliances;id=al69...1d/modules;id=92d4...26

The second method is to POST the appliance to the module. With this method you can create or

update an appliance and link it to the module in one request:

POST: /minirest/modules;id=92d4...26/appliances

BODY:
<appliances>
<appliance>
<name>Lamp front</name>
<type>lamp</type>
</appliance>

RESULT:
<appliances>
<appliance id="al169...1d">
<name>Lamp front</name>
<type>lamp</type>
<created_date>2012-09-01T18:08:44+02:00</created_date>
<last_seen_date>2012-09-01T18:10:08+02:00</last_seen_date>
<power_state>off</power_state>
<current_power_usage>0</current_power_usage>
<do_not_switch_off>false</do_not_switch_off>
<last_known_measurement_date></last_known_measurement_date>
<module id="92d4...a926"/>
</appliance>
</appliances>

Switching: Appliances and groups

Appliances and groups can be switched on and off. This is done in a POST with an empty body.
POST /minirest/appliances;id=bcf6...bb/power_state=on

More than one id can be specified, each separated by a comma.

Stretch miniREST APl v2 draft 2014-01-15/TVR

[Plugwise 1

Switching: Modules

Modules can be switched on and off. This is done in a POST with an empty body.
POST /minirest/modules;filter/power_state=on

The result of filter must be a single module object. For instance
POST /minirest/modules;mac_address=1C7C91/power_state=off

Note: Unlike switching an appliance or group, this call will wait until the module has the new state or
after a timeout of 5 seconds after which it will return the last known state. Check the ‘modified_date’
property to verify this.

Network: Scanning, adding and removing nodes

You can scan for, add and remove nodes (modules) from the Plugwise network of the Stretch. Linking
the Stretch to a NC however is not yet supported.
To start scanning for available nodes and/or to allow new nodes in the ZigBee network, the NC of the
network must be set to scanning:

POST /minirest/networks;id=c11f...96/scan_for_nodes=on
When finished scanning for or adding nodes, you must switch off scanning or it will have impact on the
performance of the ZigBee network.

POST /minirest/networks;id=c11f...96/scan_for_nodes=true
Like with modules, you can shorten a MAC address.

To add one or more nodes to a network, POST the node’s MAC address to the network:
POST: /minirest/networks;id=c11f...96/nodes;mac_address=099278D,0B84FEB

Until a node is accepted by the NC and has joined the ZigBee network, the node is listed in the
nodes_to_add element of the network.

To remove one or more nodes from a network, use DELETE:
DELETE: /minirest/networks;id=c11f...96/nodes;mac_address=000D6F000099278D,0B84FEB

Until the node has left the ZigBee network and the registration is removed from the NC, the node is

listed in the nodes_to_delete element of the network.

Examples

Example 1: Creating, linking, naming and switching an appliance

Suppose you have 2 lamps in your living room that you want to switch using the right button of a
Plugwise Switch with id eeB84rEeB.
All you have to do is:

Stretch miniREST API v2 draft 2014-01-15/TVR

[Plugwise

1. Create an appliance for each lamp

2. Link each appliance to the module the corresponding lamp is connected to
3. Add the appliances to the switching group of right button rule of the Switch

The first 2 steps can be combined to one request per module.

1&2. Create each appliances by posting it directly to its module

POST:
BODY:

RESULT:

POST:
BODY:

RESULT:

/minirest/module;id=92d4...26/appliances

<appliances>
<appliance>

<name>Lamp front</name>
<type>lamp</type>
</appliance>
</appliances>

<appliances>

<appliance id="al69...1d">

<name>Lamp front</name>

<type>lamp</type>
<created_date>2012-09-01T18:08:44+02:00</created_date>
<last_seen_date>2012-09-01T18:10:08+02:00</last_seen_date>
<power_state>off</power_state>
<current_power_usage>@</current_power_usage>
<do_not_switch_off>false</do_not_switch_off>
<last_known_measurement_date></last_known_measurement_date>
<module id="92d4...26"/>

</appliance>

</appliances>

/minirest/module;id=ea9c...8f/appliances

<appliances>
<appliance>

<name>Lamp back</name>
<type>lamp</type>
</appliance>
</appliances>

<appliances>

<appliance id="41b9...84">

<name>Lamp back</name>

<type>lamp</type>
<created_date>2012-09-01T18:08:44+02:00</created_date>
<last_seen_date>2012-09-01T18:11:50+02:00</last_seen_date>
<power_state>off</power_state>
<current_power_usage>0</current_power_usage>
<do_not_switch_off>false</do_not_switch_off>
<last_known_measurement_date></last_known_measurement_date>
<module id="ea9c...8f"/>

</appliance>

</appliances>

3. Add appliances to the switching group:

Stretch miniREST API v2 draft

14

2014-01-15/TVR

[Plugwise 1

You can GET the correct group by the request:
GET: /minirest/rules;module=00B84FEB;type=button_right/groups
RESULT:
<groups>
<group id="d2ea...la">
<name>Group_0OB84FEB_button_right</name>
<type>switching</type>
<created_date>2012-09-01T17:14:06+02:00</created_date>
<rule id="e892...29"/>
</group>
</groups>

POST: /minirest/groups;id=d2ea...la/appliances;id=al169...1d,41b9...84
RESULT:
<groups>
<group id="d2ea...la">
<name>Group_@OB84FEB_button_right</name>
<type>switching</type>
<created_date>2012-09-01T17:14:06+02:00</created_date>
<appliances>
<appliance id="a169...1d"/>
<appliance id="41b9...84"/>
</appliances>
<rule id="e892...29"/>
</group>
</groups>

After some seconds, the Stretch has programmed the modules to respond to the Switch and the
lamps can be switched by the right button. You can also use a POST to switch the lamps:

POST: /minirest/groups;id=d2ea...la/power_state=on
POST: /minirest/groups;id=d2ea...la/power_state=off

Example 2: Adding and removing modules to and from a network

Only modules that are not yet linked to a network can be added to a network. To add a module to the
Plugwise ZigBee network you must know the MAC address of that module or you can ‘scan’ for
available modules and add use MAC addresses with the risk that you add a module that is not yours,
i.e. its plugged in in a neighbouring house.

The first step is to tell the Stretch to allow (new) modules in the network:

POST /minirest/networks;id=cl11f...96/scan_for_nodes=on

Next you add the MAC address(es) of the module(s) to the network:
POST: /minirest/networks;id=c11f...96/nodes;mac_address=1A20C41

You can shorten the MAC addresses to a minimum of the last 6 digits, but we advise to use at least the
last 7.

Stretch miniREST API v2 draft 2014-01-15/TVR

(& Plugwise :

For knowing the (intermediate) result you call:
POST: /minirest/networks;id=c11f...96
RESULT:
<?xml version="1.0" encoding="iso-8859-1"?>
<networks count="1">
<network id="c11f...96">
<name>00OD6FOOOO4EEA32< /name>
<type>pwzigbee</type>
<created_date>2012-11-02T10:40:24+00:00</created_date>
<modified_date>2012-11-06T07:26:00+02:00</modified_date>
<last_seen_date>2012-11-06T07:26:00+02:00</last_seen_date>
<scan_for_nodes>on</scan_for_nodes>
<nodes>
<node id="b957...66">
<mac_address>000D6FOOOO4EEA32</mac_address>
<type>0</type>
</node>

<node id="7197...6b">
<mac_address>000D6F00OOD3588E</mac_address>
<type>2</type>
</node>
</nodes>
<nodes_available>
<node>
<mac_address>000D6F0OO1A20DE1</mac_address>
<last_seen_date>2012-11-06T04:25:45+02:00</1last_seen_date>
</node>
<node>
<mac_address>000D6F0001A20C41</mac_address>
<last_seen_date>2012-11-06T04:23:32+02:00</last_seen_date>
</node>
</nodes_available>
<nodes_to_add>
<node>
<mac_address>000D6F0001A403C5</mac_address>
</node>
</nodes_to_add>
<nodes_to_remove/>
</network>
</networks>

As soon as the module is accepted in the network, it will be removed from the ‘nodes_to add’ list
appear in the ‘nodes’ list.

Available modules (modules that are currently not part of any network) will appear in the
‘nodes_available’ list.

To remove a module from the network you use:
DELETE: /minirest/networks;id=c11f...96/nodes;mac_address=000D6FQ00OD3588E

The module will be added to the ‘nodes_to remove’ list, but will also remain in the ‘nodes’ list. As soon

Stretch miniREST API v2 draft 2014-01-15/TVR

Plugwise 1

as the has been removed from the network it will disappear from both lists.

Note that to be removed a module has be online, so especially for SEDs it might take awhile before the
module has been removed from the network.

Stretch discovery

The Plugwise Stretch supports mDNS (a.k.a. Apple Bonjour) and advertises the webserverver.
On Linux systems you can discover a Stretch on the local network with avahi.

avahi-browse -ptr plugwise. tcp

Stretch miniREST API v2 draft 2014-01-15/TVR

